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2. STATEMENT OF THE PROBLEM 
Compact, solid-state thermoelectric devices are used for both cooling and power generation. 
These highly reliable devices have no moving parts, operate around room temperature, and are 
easily integrated into compact systems. Despite these advantages, engineering applications have 
been limited by the relatively low intrinsic power conversion efficiency of the semiconductor 
materials used in these devices. The intrinsic thermoelectric efficiency for a given material is 
defined by the unitless figure of merit, ZT, 
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where S is the Seebeck coefficient, σ the electrical conductivity, T is the absolute temperature, 
and κe and κg are the electronic and lattice contributions to the thermal conductivity, respectively. 
Engineered material structures, in which at least one dimension is on the nanometer scale, 
dramatically alter the thermoelectric properties due the confinement of the carriers inside the 
material and phonon scattering from nanometer-scale interfaces. Under confinement, the 
Seebeck coefficient can increase as a result of the increase in the density of states near the Fermi 
energy and the lattice thermal conductivity, κg, will decrease due to increased phonon scattering 
at boundaries (relative to electron scattering). Thermoelectric materials with enhanced 
performance (ZT > 1) have recently been realized in nanometer-scale heterogeneous 
semiconductor material systems. This project investigates the use of chemically synthesized 
semiconductor nanoparticles as building blocks to engineer composite materials with enhanced 
thermoelectric performance. We have investigated methods synthesizing various semiconductor 
compounds in nanoscale form (spherical particles, rods and wires), arranging nanoparticles in 
ordered arrays and forming composites with nanoparticles and conducting polymers.  
 
 
3. SCIENTIFIC PROGRESS AND ACCOMPLISHMENTS 
3.1 Summary 
The goal of this research project was to increase the understanding of transport properties in 
nanometer-scale materials and determine if the intrinsic thermoelectric efficiency can be 
increased by engineering a material structure using nanometer-sized particles as building blocks. 
The project consists of four parts: 1) the synthesis of semiconductor and semimetal nanoparticles 
2) the consolidation of the particles into ordered arrays, colloidal crystals and other functional 
materials, 3) accurate measurements of the composite material’s thermophysical properties and 
4) theoretical modeling of the transport phenomena.  The project involves a close collaboration 
between the University of New Orleans and IBM T.J. Watson Research Center. Our nanoparticle 
synthesis efforts have been directed toward the lead chalcogenides (IBM) and the bismuth 
chalcogenides (UNO). We have been successful in synthesizing PbTe/PbSe core-shell nanowires 
as well as nanowires of PbTe, PbSe, and PbS. This is one of the primary goals of this program.  
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We have synthesized Bi2S3 and Bi2Te3 nanostructures (particles and rods) and formed composite 
materials by combining these semiconductor nanostrucutures with a conducting polymer. In 
addition, we have been successful. We have measured the thermal and electrical properties of 
sintered films, pressed pellets and polymer/semiconductor nanocomposites.  Finally, we have 
developed a theory for the bulk (composite) electronic and thermal transport in nanoparticle 
core/shell structures and superlattices of core/shell nanowires. 
 
Key Accomplishments 
• Synthesized highly-crystalline, nanoparticles colloids of PbSe, PbTe and PbS with a nearly 

monodisperse distribution of particle sizes. The physical properties and morphology of this 
material has been completely characterized.  We demonstrated that we can control the 
morphology of these nanostructures from spherical to cubic particles and nanowires. 

• Synthesized highly-crystalline, nearly monodisperse colloids of bismuth sulfide and bismuth 
telluride compounds and are able to form rods with controlled morphology. 

• Developed techniques for ordered self assembly of nanoparticle systems consisting of two 
different nanoparticle materials. 

• Performed transport measurements on sintered nanoparticle films and nanoparticle 
conducting polymer/nanoparticle composites. 

• Measured current-voltage characteristics of single PbTe nanowires. 
• Measurement the thermoelectric properties of state-of –the-art semiconductor materials 

(clathrate, perovskite, carbon nanotube composites, and nanoparticle/polymer composites) as 
a function of temperature and hydrostatic pressure.  

 
3.2 Lead chalcogenide core/shell nanowires 
One of the main accomplishments of this project, and in fact, a primary goal of this research 
project was the successful synthesis of PbTe/PbSe core/shell nanowires. These nanowire 
structures are shown in Figure 1. These structures are formed from modifications of the high-
temperature organometallic chemical synthesis procedures described in previous reports and 
journal articles. We can control the core/shell structure morphology (cubes, spheres, stars, and 
nanowires) and have added the sulfur compound of this family (PbS) to our list of lead 
chalcogenide nanostructures. 
 
A model for the formation of the PbSe/PbTe core shell nanowires is shown in Figure 2. First the 
PbSe core compound is formed. Under precisely-defined conditions, this compound forms as a 
star-shaped structure with six arms. The arms of these structures connect to form a chain of PbSe 
stars. Then, the tellurium precursor is added to the solution. PbTe fills in around the PbSe stars. 
The TEM image (Figure 1) shows, however, that the chains of PbSe stars that form the core are 
not completely connected. Also, this nanowire formation is always accompanied by a number of 
PbTe cubic nanoparticles which must be separated by centrifugation or filtering.   
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Figure 1. Transmission electron microscope images 
of PbTe/PbSe core/shell nanowires. The darker 
structures are PbSe cores surrounded by a coating of 
PbTe. 

Figure 2. Simple model of PbSe/PbTe core/shell 
nanowire growth.  

 
A model for the formation of the PbSe/PbTe core shell nanowires is shown in Figure 2. First the 
PbSe core compound is formed. Under precisely-defined conditions, this compound forms as a 
star-shaped structure with six arms. The arms of these structures connect to form a chain of PbSe 
stars. Then, the tellurium precursor is added to the solution. PbTe fills in around the PbSe stars. 
The TEM image (Figure 1) shows, however, that the chains of PbSe stars that form the core are 
not completely connected. Also, this nanowire formation is always accompanied by a number of 
PbTe cubic nanoparticles which must be separated by centrifugation or filtering.   
 
3.3 Bismuth-antimony alloy nanoparticles 
Highly crystalline, bismuth and bismuth-antimony alloy nanoparticles were synthesized using a 
high-temperature, organic solution phase reduction method. The nanoparticles are capped by a 
carboxylic acid molecule and form stable colloids in nonpolar solvents. Size-selective 
precipitation of the original colloid results in colloids with a narrow size distribution of inorganic 
particles. Upon evaporation of the solvent, these particles can be made to organize into two-
dimensional assemblies with short-range hexagonal order. Two examples are shown in Fig. 4, Bi 
and Bi0.9Sb0.1.  
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Figure 3. Transmission electron microscope images of nanoparticles, nanorods and nanowires of PbTe (top 
row) and PbS (bottom row). 
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Figure 4. Left – Bismuth  nanoparticles with diameter of ~6 nm. Right  – Bismuth-antimony nanoparticles with 
diameter of ~8 nm. The antimony concentration is 10%. The inset shows a high-resolution TEM image of a 
single nanoparticle demonstrating distinct fringes from well-organized lattice planes. 
 
3.4 Bismuth sulfide/telluride nanorods 
 

  
Figure 5. Transmission electron microscope images of bismuth sulfide nanorods synthesized under 
different reac tion conditions. (a) synthesized with a carboxyl stabilizing agent (-COO-) and (b) 
synthesized with a sulfonate stabilizing agent (-SO3

-). 
 

 
Highly crystalline, bismuth sulfide nanorods (oblate nanoparticles) were synthesized using still 
another variation of the high- temperature, organic solution phase reduction method. The 
chemical reaction is a co-precipitation using bismuth 2-ethylhexanoate (Bi) and thioacetamide 
(S) in the presence of appropriate organic capping agents. The Bi:S ratio can be controlled by  
varying the ratio of the two precursors. The aspect ratio and size of the particle are controlled by 
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adjusting the reaction time and temperature and organic capping ligand. Figure 3 shows the 
results of the bismuth sulfide synthesis using two different capping ligands.  
 
3.5 Binary nanoparticle superlattices 
An important advance in nanoparticle assembly is the fabrication of a binary three-dimensional 
assembly of  11 nm γ-Fe2O3 and 6 nm PbSe nanoparticles, the results of which are shown in Fig. 
6. This work demonstrates the controlled assembly of two very different nanoparticle 
compounds, with of course, different optical and magnetic properties.  We point out that this 
research effort was a collaboration between Columbia, IBM and AMRI at the University of New 
Orleans. The work was performed, in part, by AMRI post-doc K.-S. Cho while at IBM, T.J. 
Watson Research Center, under the direction of Dr. Chris Murray. 
 

 
 
3.6 Semiconductor/polymer nanocomposites 
Successful growth of bismuth sulfide and bismuth 
telluride in nanorod form has allowed the formation of 
a core-shell particle, which utilizes the bismuth 
compound as a quantum confining core and conducting 
polyaniline as the outer shell. A bulk form of the core-
shell system has been fabricated through pressing and 
sintering techniques which has resulted in a 
nanocomposite of nanorod core particles within a 
polyaniline matrix. Three-dimensional quantum 
confinement of the carriers within the bismuth 
compound is obtained through the higher polymer 
bandgap as well as complete nanorod surface coverage.   
 
 

  
Figure 6. Transmission electron micrographs showing a three dimensional, binary ordered self assembly of 
11 nm γ-Fe2O3 and 6 nm PbSe nanoparticles, from Ref. {Redl, 2003 #84}. a) High magnification image of the 
[100] superlattice plane, and b) low magnification image, as in a); inset shows a small-angle electron 
diffraction pattern of a 6-µm2 area of the superlattice.  
 

Figure 7. Bi2S3-polyaniline nano-
composite after compaction. 
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Electrical conductivity of polymer is controlled by protonation of the polyaniline in HCl vapor. 
Both the electrical conductivity and Seebeck coefficient of the composite is also found to be 
responsive to doping levels of the outer polymer shell. 
 

 
 

Figure 8. Thermoelectric properties of bismuth telluride/polyaniline nanocomposites as a functi on of 
temperature.  
 
Our complete sample sets developed for this project work consist of, single compound nanorods 
and nanocomposites and polyaniline (PAN), for comparison.  Specifically, the thermoelectric 
coefficients were obtained for the doped (D) and undoped (U) PAN as well as coated and 
uncoated Bi2S3 and Bi2Te3 nanorods. In all cases, powders were isolated, compressed in a 
uniaxial cold press and then sintered at temperatures < 150°C. Figure 7. shows Seebeck 
coefficient and electrical conductivity for five samples of Bi2Te3/polyaniline nanocomposite. In 
these studies, Bi2Te3 nanorods were chemically-synthesized using the high-temperature, 
organometallic methods outlined above. Currently, this latest Bi2Te3 work is being written up 
and will be submitted to a scientific journal. 
 
3.7 Transport measurements 
During the course of this project, we adapted and developed a method for making temperature-
dependent Seebeck and electrical conductivity measurements under hydrostatic pressure.  A 
small vessel was machined from a beryllium-copper alloy. The sample two small (0.002” 
diameter) copper-constantan thermocouples were attached to the sample, as illustrated in Fig. 8.  
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Two ceramic, surface mount resistors were 
attached to the ends of the sample as heaters.   
In addition, two current leads (not shown) were 
attached to the ends of the sample. This 
assembly was place in a small, deformable, 
sealed tube filled with a pressure transmitting 
medium, Fluorinert. This tube was placed into 
the Be-Cu vessel and the upper piston was 
compressed using a hydraulic press. The piston 
was then mechanically locked in place. The 
entire apparatus could then be cooled by simply 
placing it in a liquid nitrogen bath. The two 
heaters were driven with balanced sine-wave 
currents, 90° out of phase which yields periodic 
heating of the sample ends, 180° out of phase. 
The Seebeck and IR voltages are measured 
from the copper leads. The system is capable of 
attaining pressures up to 2 GPa. 
 
We performed several pressure-dependent transport studies during the course of this project, 
studying such diverse materials as semiconductor nanocomposites, clathrates, Bi2Sr2Co2O9, and 
carbon nanotubes. Figure 9 shows results for bismuth sulfide nanoparticle material.  As 
mentioned above, our nanoparticles were formed into continuous structures two ways: 1) 
deposition onto an insulating substrate from solution and subsequent evaporation of the solvent 
to form thin films and 2) uniaxial compaction of the dried powder followed by low-temperature 
sintering (~100°C to 300°C). For bismuth sulfide, the best materials were formed by compaction 
of the powder under moderate pressures (70 MPa) at 300°C under vacuum. The material was 
then sintered at ambient pressure under vacuum at 200°C to 250°C for several hours. Transport 
measurements (Seebeck coefficient and resistivity) as a function of temperature for these 
materials is shown in Figure 9. At ambient pressure, the Seebeck coefficient is a monotonically 
increasing function of temperature. At higher pressures, a pronounced dip in the Seebeck 
coefficient forms at about 140 K, which increases with increasing pressure. This is assumed to be 
due to the different influence of carriers from different bands. The resistivity, however, increases 
with increasing pressure, but retains the same temperature dependence. Both the Seebeck 
coefficient and resistivity return to within 15% of their initial ambient pressure values after 
temperature cycling.  
 
 
 
 
 
 
 
 

 
Figure 9.  Diagram of the vessel used for the 
pressure dependent thermoelectric measurements. 
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3.8 Thermoelectric properties of composites (theory) 
The successful fabrication of a nanocomposite in bulk form consisting of a randomly oriented 
assembly of nanoscale sized core-shell particles has required an increased understanding of the 
theoretical aspects of the thermoelectric transport properties. Specifically, we wanted to develop 
a model for the nanocomposite which consists of a nanorod core in 1D quantum confinement 
coated with an outer conducting polymer shell.  Upon fabrication of these composites, the  
nanorods are embedded within a three-dimensional conducting polymer matrix.  We address the 
nanorod thermoelectric components by assuming a single parabolic band within the one-
dimension density of states.  Both elastic and inelastic scattering of electrons or holes is 
accommodated by solving the variational form of the Boltzmann transport equation.  An altered 
lattice thermal conductivity for the confined nanorods is calculated separately to account for 
boundary scattering that is important in low dimension structures. The thermal and electrical 
properties of the conducting polyaniline shell (matrix) were modeled using temperature-
dependent phenomenological models. Exact expressions for the bulk effective electrical and 
thermal conductivities, Seebeck coefficient and figure of merit are then obtained through the 
field decoupling transformation, which is a special case of two-component composites.  The 
method we developed is easily generalized to any two-component composite of spherical or 
cylindrical microstructure and is independent of the materials bulk geometry.  The results 
similarly apply to one, two or three dimensional transport regimes with or without quantum 
confinement merely by solving the appropriate fundamental transport equations for each 
constituent material. Comparison to experimental data is then presented which helps validate the 
nanocomposite theory. 
 
 

 
 

Figure 10. Transport property measurements of sintered 4 nm ×  40 nm nanorods of Bi2S3 under 
hydrostatic pressure. 
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3.9 Test and measurement apparatus 
 
Finally, we describe the measurement apparatus that was constructed for this project. The shown 
in Fig. 10, was made to be extremely flexible. It is built around two temperature-controlled 
chambers: 1. a closed cycle, He cryostat for temperatures from 10 K to 450 K and 2. a tube 
furnace for temperatures from ~300 K to 1500 K. Both chambers are capable of achieving 
moderate vacuum (10-6 to 10 -5 Torr). The electronic instrumentation is shared between the two 
temperature controlled chambers. This electronics, with the computer, allows us to measure 
Seebeck coefficient (standard and ac), electrical condctivity, and thermal conductivity (steady-
state, ac and 3ω). In addition, the sample mounted in the cryostat can be placed between the 
poles of the computer-controlled electromagnet for Hall effect measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  
Figure 11. Transport property measurements measurement system designed and assembled for this project. 
The electronics include nanovoltmeters, nanovolt multiplexer with Hall effect card, programmable 
current/voltage sources and a lock-in amplifier.. 
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